2.2 The Limit of a Function

$$\frac{1}{h \rightarrow 0} \frac{f(x+h) - f(x)}{h \rightarrow 0}$$

Suppose f(x) is defined when x is near the number a. (This means that f is defined on some open interval that contains a, except possibly at a itself.) Then we write

$$\lim_{x \to a} f(x) = L \qquad \text{Lim} f(x) = \left(\frac{1}{X} \right)$$

and say

"the limit of f(x), as x approaches a, equals L"

if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by restricting x to be sufficiently close to a (on either side of a) but not equal to a.

e of $\lim_{t \to 0} \frac{\sqrt{t^2 + t^2}}{t^2}$

$$\frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{1}{6}$$
(0.166)

x	$\frac{\sqrt{x^2+9}-3}{x^2}$
0.1	0.1666204
0.01	0.1666662
0.001	0.1666666
0.0001	0.16666668
0.00001	0.16666668

Find
$$\lim_{x\to 0} \left(x^3 + \frac{1}{x^3}\right)$$

$$x_{1} = \frac{\cos 5x_{1}}{100000}$$

$$-0.01 = 9.887503 \times 10^{-5}$$

$$-0.001 = 9.999775 \times 10^{-5}$$

$$-0.0001 = 9.999999 \times 10^{-5}$$

$$0 = 1 \times 10^{-4}$$

$$0.0001 = 9.9999999 \times 10^{-5}$$

We write

$$\lim_{x \to a^{-}} f(x) = L$$

$$\lim_{x \to a^{-}} f(x) = L$$

$$\lim_{x \to a^{-}} f(x) = L$$

and say that the **left-hand limit of** f(x) as x approaches a [or the limit of f(x) as x approaches a from the left] is equal to L if we can make the values of f(x) arbitrarily close to L by restricting x to be sufficiently close to a with x less than a.

We write

$$\lim_{x \to a^{+}} f(x) = L$$

$$X \to A$$

$$7 \times A$$

$$7 \times A$$

$$7 \times A$$

$$7 \times A$$

and say that the **right-hand limit of** f(x) as x approaches a [or the limit of f(x) as x approaches a from the right] is equal to L if we can make the values of f(x) arbitrarily close to L by restricting x to be sufficiently close to L with L greater than L and L if we can make the values of L arbitrarily close to L by restricting L to be sufficiently close to L with L greater than L and L if we can make the values of L arbitrarily close to L by restricting L to be sufficiently close to L with L greater than L and L if we can make the values of L arbitrarily close to L by restricting L to be sufficiently close to L with L greater than L and L if we can make the values of L arbitrarily close to L by restricting L arbitrarily close to L by restricting L to be sufficiently close to L with L greater than L and L arbitrarily close to L by restricting L arbitrarily close to L arbitrarily close to

(a)
$$\lim_{x \to 2^{-}} g(x) = 3$$

(b)
$$\lim_{x\to 2^+} g(x) =$$

(c)
$$\lim_{x\to 2} g(x) = \int \int \int$$

(d)
$$\lim_{x \to 5^{-}} g(x) \supset \mathcal{J}$$

(e)
$$\lim_{x\to 5^+} g(x) = \mathcal{J}$$

(f)
$$\lim_{x\to 5} g(x) = \mathcal{J}$$

Find $\lim_{x \to 0} \frac{1}{x^2}$ if it exists.

Does the curve $y = \frac{2x}{x-3}$ have a vertical asymptote?

$$L_{IM}$$
 $\frac{2x}{x-3} = DNE$ or φ
 $x-33$ $\frac{2}{x-3}$ $\frac{3}{x-3}$ $\frac{3}{x-3}$ $\frac{3}{x-3}$ $\frac{3}{x-3}$ $\frac{3}{x-3}$ $\frac{3}{x-3}$ $\frac{3}{x-3}$ $\frac{3}{x-3}$ $\frac{3}{x-3}$

Does the curve $y = \frac{2x}{x-3}$ have a

$$\frac{2x}{x-3} = DNE$$

VA. 7X	(=5
--------	-----

$\boldsymbol{\mathcal{X}}$	$ \frac{2x}{x-3} $
2.9	-58
2.99	-598
2.999	-5998
3	undefined
3.001	6 002
3.01	602
3.1	62

$$\ln x - \ln 4$$

$$x-4$$

 $x \rightarrow 4$

$$\frac{\ln(x)-\ln(4)}{x-4}$$

$$\lim_{x \to (\pi/2)^+} \frac{1}{x} \sec x$$

$$\lim_{x \to \infty} \frac{1}{x} - \sec x$$

$$\frac{\pi}{2} \quad \text{undefined}$$

$$\frac{\pi}{2} + 0.0001 \quad -6365.7925$$

$$\frac{\pi}{2} + 0.0001 \quad -6365.7925$$

$$\frac{\pi}{2} + 0.01 \quad -63.260311$$

$$\frac{\pi}{2} + 0.01 \quad -63.260311$$

$$\frac{\pi}{2} + 0.1 \quad -5.9951569$$

$$\frac{\pi}{2} + 0.01$$
 -63.260311 $\frac{\pi}{2} + 0.1$ -5.9951569 $\frac{\pi}{2} + 1$ -0.46226731

$$\lim_{x o 0}\left(x^2-rac{2^x}{1000}
ight)=rac{1}{1000}$$

L1M7

- 0, 1 LIM - 0,0 X -> 0 -0,001 0,601 0,01 (),