1) For the function *f* whose graph is given, state the following:

- a) $\lim_{x \to \infty} f(x)$ b) $\lim_{x \to -\infty} f(x)$
- c) $\lim_{x \to 1} f(x)$
- d)
- $\lim_{x\to 3}f(x)$
- e) What are the asymptotes of the function?

Differentiate the following functions 2 – 6:

2)
$$g(x) = \frac{5}{8}x^2 - 8x + 17$$

3) $f(x) = (x + 7\sqrt{x})e^x$
4) $m(x) = \frac{\sqrt[3]{x}}{x-3}$
5) $y = \frac{2x}{9-\tan(x)}$
6) $n(x) = \left(\frac{x^3-2}{x^3+2}\right)^8$

- 7) Find the equation of the tangent line at (2, 1): $x^2 + 6xy + 12y^2 = 28$
- 8) Find the limit: sin(r-1)

$$\lim_{x \to 1} \frac{\sin(x-1)}{x^3 + 2x - 3}$$

- 9) Given the function $f(x) = \frac{x-4}{x^2}$ answer the following questions:
 - a. What is the domain of the function?
 - b. What is the x-intercepts?
 - c. What is the y-intercepts?
 - d. Find the interval on which *f* is increasing?
 - e. Find the interval on which f is decreasing?
 - f. Find the interval on which f is concave up?
 - g. Find the interval on which *f* is concave down?
 - h. Find the local maximum for f?
 - i. Find the local minimum for f?

10) A box with an open top is to be constructed from a 7 ft by 6 ft rectangular piece of cardboard by cutting out squares or rectangles as shown in the figure and bending up the sides. Find the largest volume the box can have.

11) A boat leaves the dock at 1pm and travels due south at a speed of 20 km/h. Another boat has been heading due east at 15 km/h and reaches the same dock at 2pm. How many minutes after 1pm were the two boats closest together?

Find the integral of the following functions 12-14:

12)
$$\int_{1}^{16} x^{-\frac{3}{4}} dx$$

13) $\int (x^{1.3} + 11x^{4.5}) dx$
14) $\int \frac{e^x}{(7 - e^x)^2} dx$