1) For the function f whose graph is given, state the following:

a) $\lim _{x \rightarrow \infty} f(x)$
b) $\lim _{x \rightarrow-\infty} f(x)$
c) $\lim _{x \rightarrow 1} f(x)$
d) $\lim _{x \rightarrow 3} f(x)$
e) What are the asymptotes of the function?

Differentiate the following functions 2-6:
2) $g(x)=\frac{5}{8} x^{2}-8 x+17$
3) $f(x)=(x+7 \sqrt{x}) e^{x}$
4) $m(x)=\frac{\sqrt[3]{x}}{x-3}$
5) $y=\frac{2 x}{9-\tan (x)}$
6) $n(x)=\left(\frac{x^{3}-2}{x^{3}+2}\right)^{8}$
7) Find the equation of the tangent line at (2,1): $x^{2}+6 x y+12 y^{2}=28$
8) Find the limit:
$\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x^{3}+2 x-3}$
9) Given the function $f(x)=\frac{x-4}{x^{2}}$ answer the following questions:
a. What is the domain of the function?
b. What is the x-intercepts?
c. What is the y-intercepts?
d. Find the interval on which f is increasing?
e. Find the interval on which f is decreasing?
f. Find the interval on which f is concave up?
g. Find the interval on which f is concave down?
h. Find the local maximum for f ?
i. Find the local minimum for f ?
10) A box with an open top is to be constructed from a 7 ft by 6 ft rectangular piece of cardboard by cutting out squares or rectangles as shown in the figure and bending up the sides. Find the largest volume the box can have.

11) A boat leaves the dock at 1 pm and travels due south at a speed of $20 \mathrm{~km} / \mathrm{h}$. Another boat has been heading due east at $15 \mathrm{~km} / \mathrm{h}$ and reaches the same dock at 2 pm . How many minutes after 1 pm were the two boats closest together?

Find the integral of the following functions 12-14:
12) $\int_{1}^{16} x^{-\frac{3}{4}} d x$
13) $\int\left(x^{1.3}+11 x^{4.5}\right) d x$
14) $\int \frac{e^{x}}{\left(7-e^{x}\right)^{2}} d x$

