The Dot Product of Two Vectors

To find the dot product of vectors a and b we multiply corresponding components and add.

1

Definition of the Dot Product

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **dot product** of \mathbf{a} and \mathbf{b} is the number $\mathbf{a} \cdot \mathbf{b}$ given by

$$\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$$

$$\langle 2, 4 \rangle \cdot \langle 3, -1 \rangle = (2) (3) + (4) (-1) = 2$$

$$\langle -1, 7, 4 \rangle \cdot \left\langle 6, 2, -\frac{1}{2} \right\rangle = (-1)(6) + (7)(2) + (4)(-\frac{1}{2}) = 6$$

$$(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) \cdot (2\mathbf{j} - \mathbf{k}) = (\mathbf{i})(0) + 2(2) + (-3)(-1) = 7$$

If a, b, and c are vectors in V_3 and c is a scalar, then

3)(3) + (2)(2) + (4)(4)

1.
$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

2.
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

3.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

4.
$$(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$$

5.
$$0 \cdot a = 0$$

$$-2(a \cdot b) = -2|a||b||\cos \theta$$

$$a \cdot b = |a||b||\cos \theta$$

Theorem

If θ is the angle between the vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

6 Corollary

If θ is the angle between the nonzero vectors ${\bf a}$ and ${\bf b}$, then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

If the vectors ${\bf a}$ and ${\bf b}$ have lengths 4 and 6, and the angle between them is $\pi/3$, find ${\bf a}\cdot{\bf b}$.

$$a.b = |a||b||Cos a$$

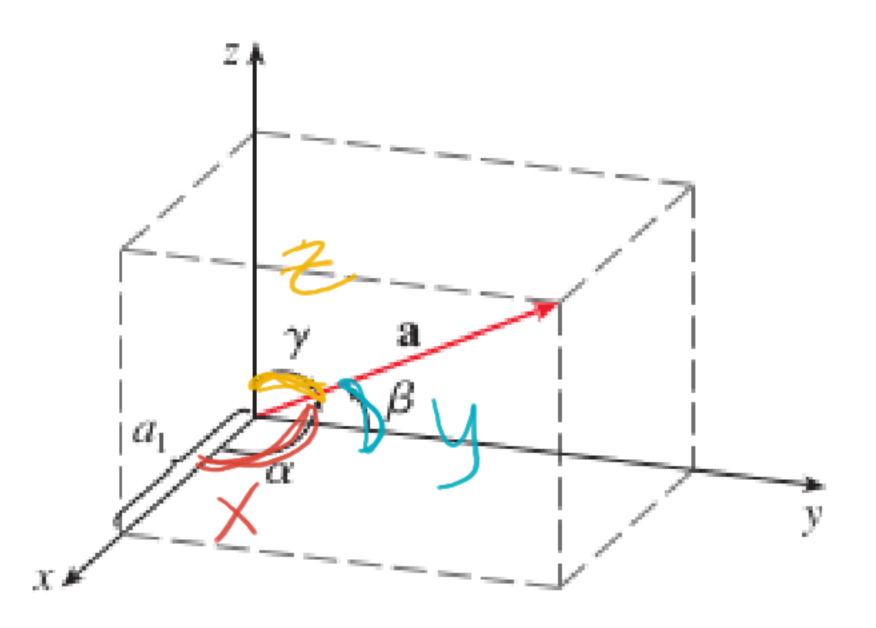
 $a.b = (4)(6)|Cos \frac{\pi}{3}|$
 $= 24(1/2)$
 $= 12$

Find the angle between the vectors $\mathbf{a} = \langle 2, 2, -1 \rangle$ and $\mathbf{b} = \langle 5, -3, 2 \rangle$.

$$|\mathbf{a}| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$$

$$|\mathbf{b}| = \sqrt{5^2 + (-3)^2 + 2^2} = \sqrt{38}$$

$$CCOS = 83.79145537$$
 $COS = 83.79145537$


$$\mathbf{a} \cdot \mathbf{b} = 2(5) + 2(-3) + (-1)(2) = 2$$

Show that 2i + 2j - k is perpendicular to 5i - 4j + 2k.

$$a \cdot b = 0$$
 $erpendicular$
 $a \cdot b > 0$ $acute(290)$
 $a \cdot b < 0$ $obtuse(90 -> 180)$
 $90^{\circ} 180^{\circ} 270 360$

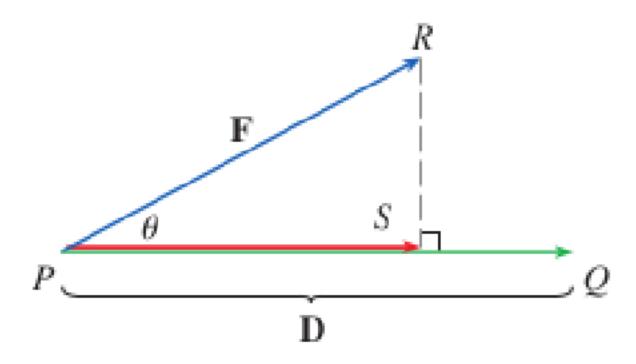
Show that $2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ is perpendicular to $5\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.

$$(2)(5)+(2)(-4)+(-1)(2)$$
 yes
 $(2)(5)+(2)(-4)+(-1)(2)$ yes

$$\cos \alpha = rac{\mathbf{a} \cdot \mathbf{i}}{|\mathbf{a}| |\mathbf{i}|} = rac{a_1}{|\mathbf{a}|} = rac{a_2}{\cos \beta} = rac{a_3}{-} = rac{a_3}{|\mathbf{a}|}$$

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle = \langle |\mathbf{a}| \cos \alpha, |\mathbf{a}| \cos \beta, |\mathbf{a}| \cos \gamma \rangle$$

$$= |\mathbf{a}| \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

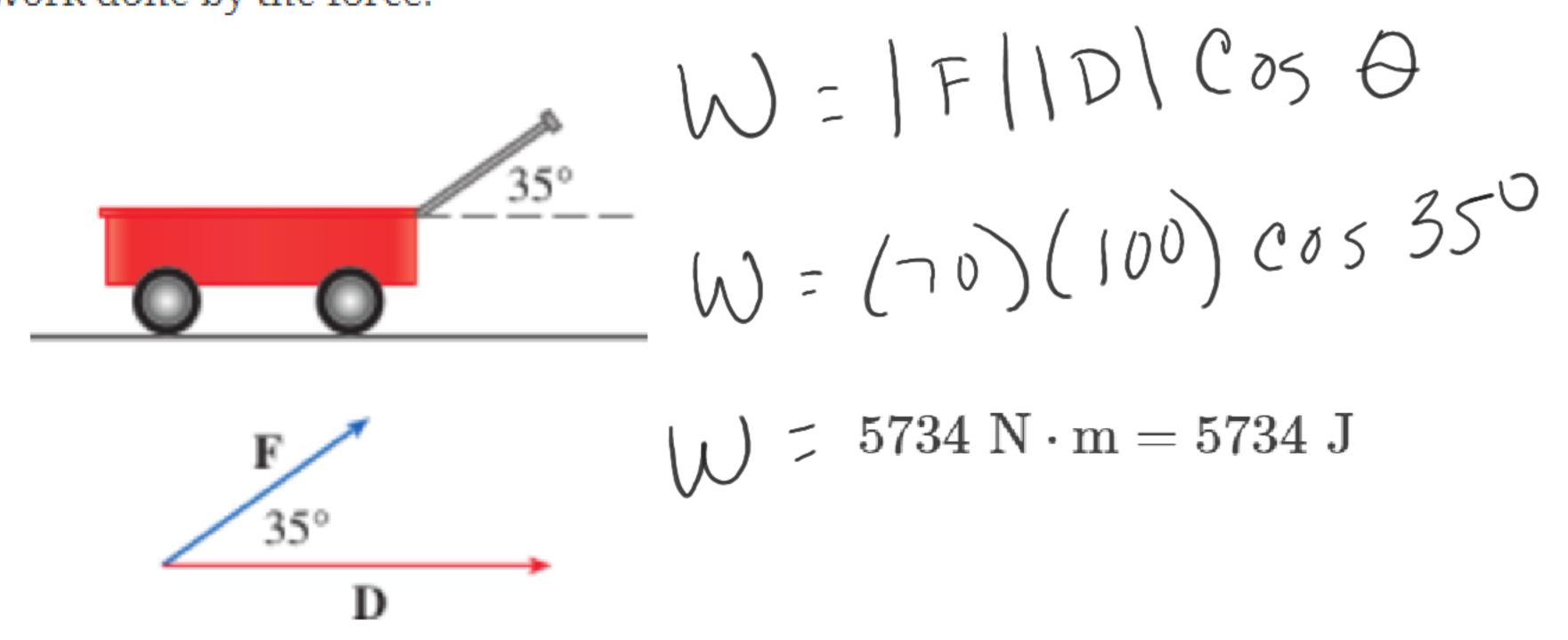

Find the direction angles of the vector $\mathbf{a} = \langle 1, 2, 3 \rangle$.

$$Cos \times = \frac{1}{\sqrt{14}} = 74.49864043 |a| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$

$$Cos y = \frac{2}{114} = 57.68846676$$

$$Cos 7 = \frac{3}{\sqrt{14}} = 36.6992252$$

Figure 6

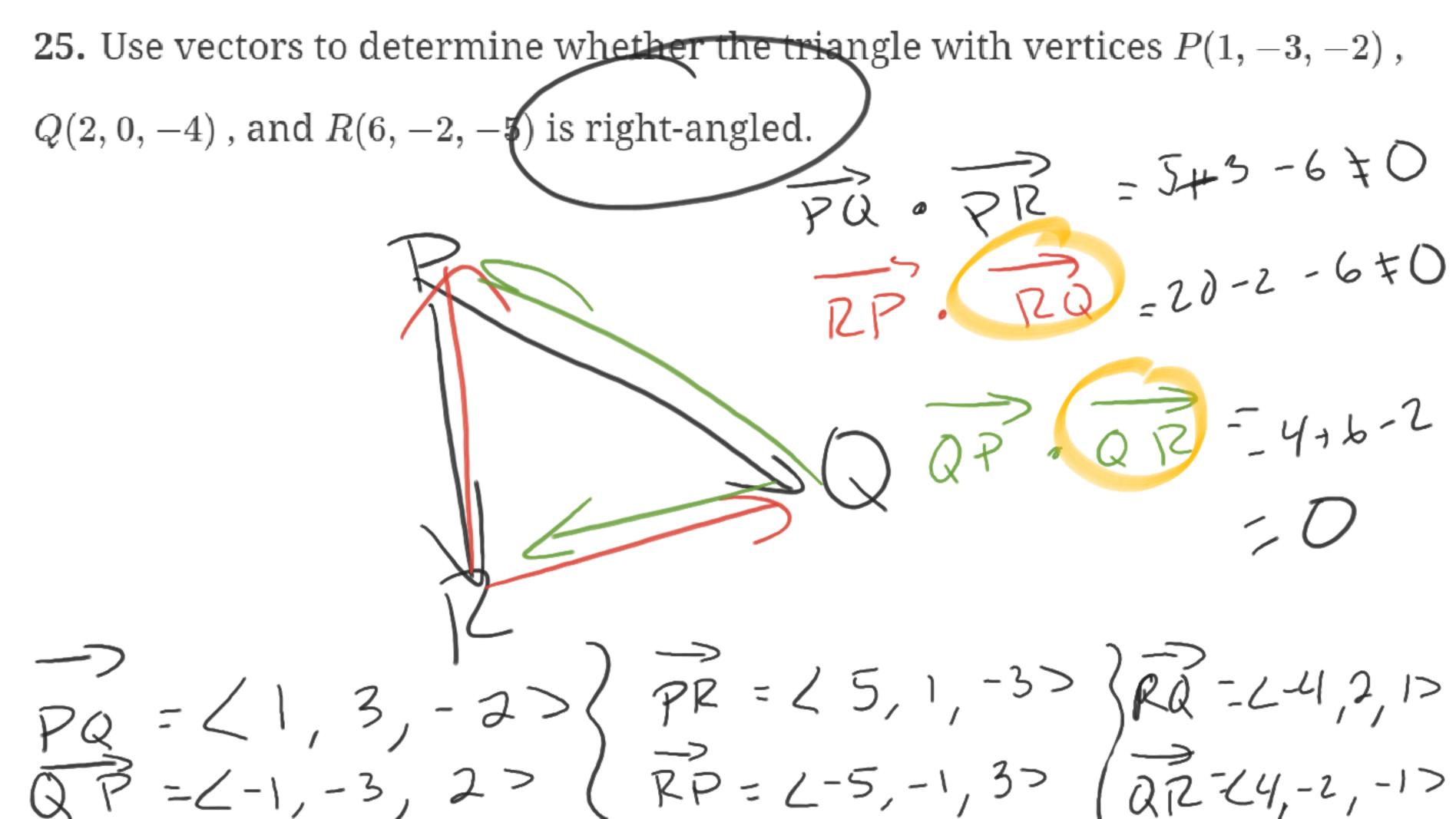


Details

But then, from Theorem 3, we have

$$W = |\mathbf{F}||\mathbf{D}|\cos\theta = \mathbf{F}\cdot\mathbf{D}$$

A wagon is pulled a distance of 100 m along a horizontal path by a constant force of 70 N. The handle of the wagon is held at an angle of 35° above the horizontal. Find the work done by the force.



A force is given by a vector $\mathbf{F} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ and moves a particle from the point P(2, 1, 0) to the point Q(4, 6, 2). Find the work done.

$$24-2,6-1,2-0$$

 $2-2,5,2>=D$
 $3(2)+(4)(5)+(5)(2)$
 $3-20$
 $3-20$
 $3-20$
 $3-20$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$
 $3-30$

50. A tow truck drags a stalled car along a road. The chain makes an angle of 30° with the road and the tension in the chain is 1500 N. How much work is done by the truck in pulling the car 1 km?

$$W = (1500)(1000)(000)$$

