10.1 Curves Defined by Parametric Equations

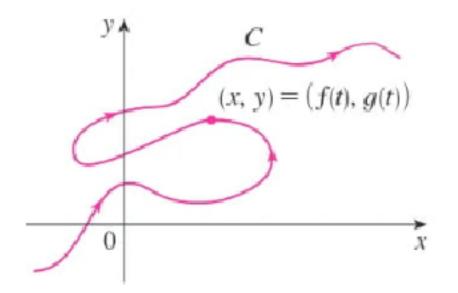


FIGURE 1

Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to describe C by an equation of the form y = f(x) because C fails the Vertical Line Test. But the x- and y-coordinates of the particle are functions of time and so we can write x = f(t) and y = g(t). Such a pair of equations is often a convenient way of describing a curve and gives rise to the following definition.

Suppose that x and y are both given as functions of a third variable t (called a **parameter**) by the equations

$$x = f(t)$$
 $y = g(t)$

(called **parametric equations**). Each value of t determines a point (x, y), which we can plot in a coordinate plane. As t varies, the point (x, y) = (f(t), g(t)) varies and traces out a curve C, which we call a **parametric curve**. The parameter t does not necessarily represent time and, in fact, we could use a letter other than t for the parameter. But in many applications of parametric curves, t does denote time and therefore we can interpret (x, y) = (f(t), g(t)) as the position of a particle at time t.

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

$$x = t^2 - 2t \qquad y = t + 1$$

t	Х	у
-2	8	-1
-1	3	0
0	0	1
1	-1	2
2	0	3
3	3	4
4	8	5

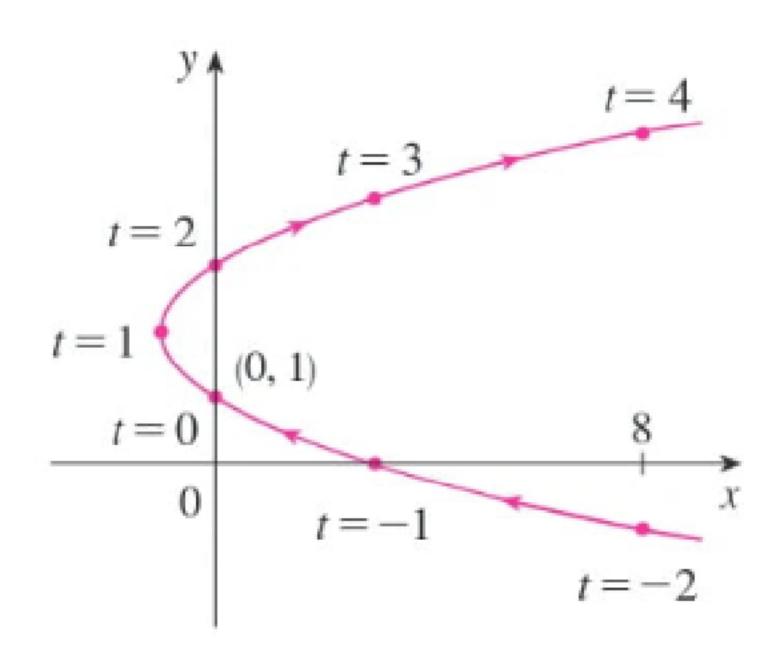
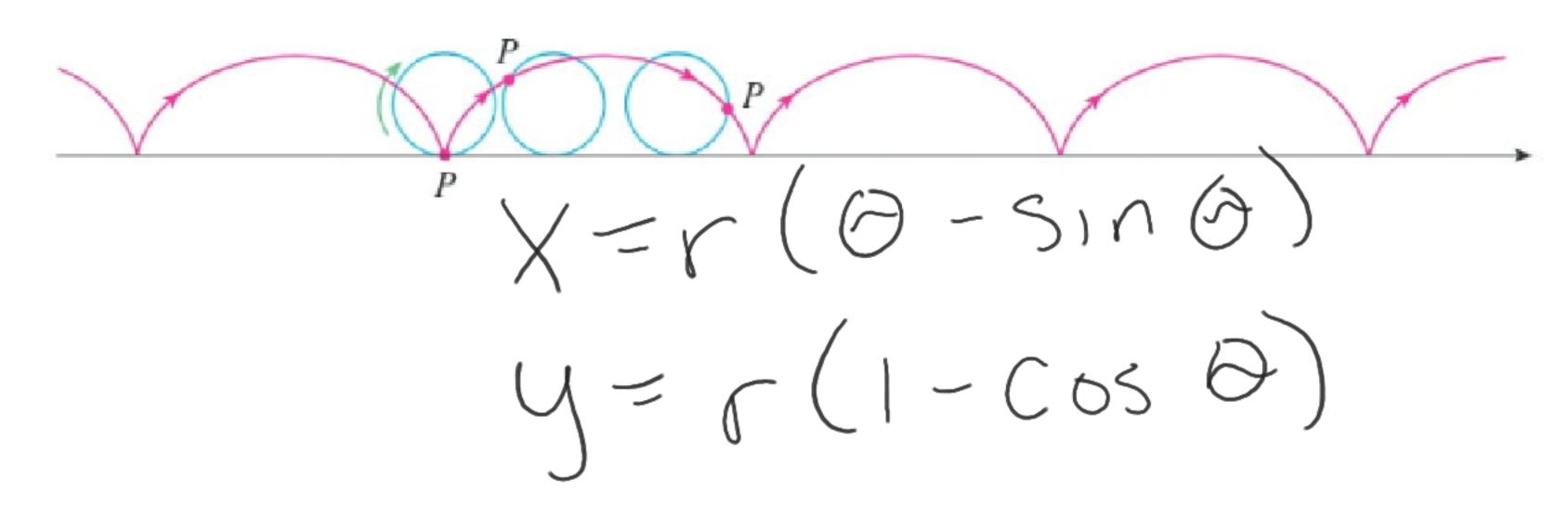


FIGURE 2

X = SinU = C05+ **EXAMPLE 7** The curve traced out by a point *P* on the circumference of a circle as the circle rolls along a straight line is called a **cycloid** (see Figure 13). If the circle has radius *r* and rolls along the *x*-axis and if one position of *P* is the origin, find parametric equations for the cycloid.



Tangents

Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x = f(t), y = g(t), where y is also a differentiable function of x. Then the Chain Rule gives

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

If $dx/dt \neq 0$, we can solve for dy/dx:

1

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \qquad \text{if} \quad \frac{dx}{dt} \neq 0$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{\frac{dx}{dt}}$$

EXAMPLE 1 A curve C is defined by the parametric equations $x = t^2$, $y = t^3 - 3t$.

- (a) Show that C has two tangents at the poin (3, 0) and find their equations.
- (b) Find the points on C where the tangent is horizontal or vertical.
- (c) Determine where the curve is concave upward or downward.
- (d) Sketch the curve.

$$X = +^{2} \qquad y = +^{3} - 3 + 2 - 3$$
a) $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3 + ^{2} - 3}{2 + 2}$

$$\sqrt{3} = \sqrt{4} - 3 + 2 + 2 + 3$$

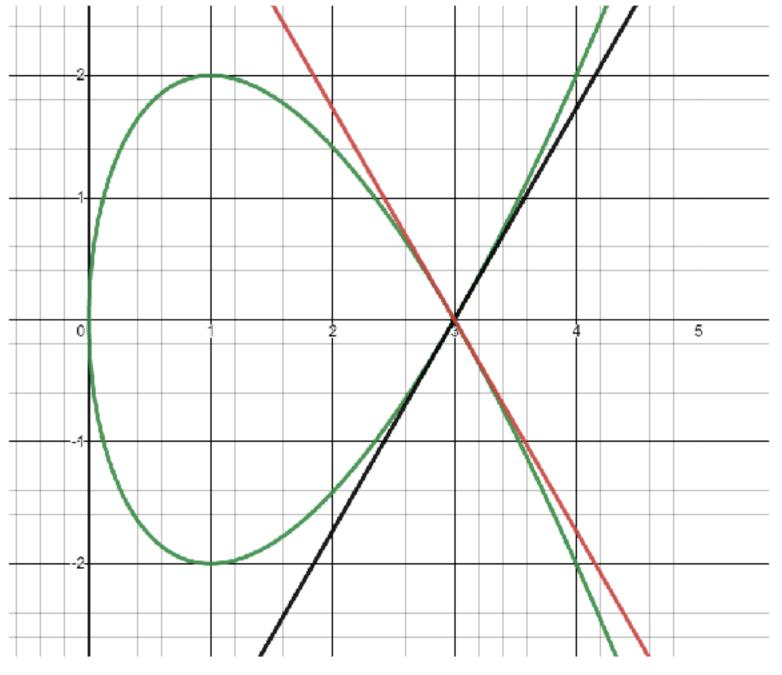
$$\sqrt{3} = \sqrt{4} - 3 + 2 + 3 + 3 = 2$$

$$+=\pm\sqrt{3}(x,y)=(3,0)$$

$$y-y_1 = m(x-x_1)$$

 $y-y_1 = m(x-x_1)$
 $y-y_1 = +\sqrt{3}(x-3)$

$$\sqrt{y-\pm\sqrt{3}(x-3)}$$



EXAMPLE 1 A curve C is defined by the parametric equations $x = t^2$, $y = t^3 - 3t$.

- (a) Show that C has two tangents at the point (3, 0) and find their equations.
- (b) Find the points on C where the tangent is horizontal or vertical.
- (c) Determine where the curve is concave upward or downward.
- (d) Sketch the curve.

$$X = +^{2} \qquad y = +^{3} - 3 + 2 - 3$$

$$b) \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3 + 2 - 3}{2 + 2}$$

$$3 + 2 - 3 = 0$$

$$Vert$$

$$3+^{2}-3=0$$
 $2+=0$
 $3+^{2}=3$ $+=0$
 $1+^{2}=1$ $1+=0$
 $1+^{2}=1$ $1+=0$
 $1+^{2}=1$ $1+=0$
 $1+^{2}=1$ $1+=0$
 $1+^{2}=1$ $1+=0$
 $1+^{2}=1$ $1+=0$
 $1+^{2}=1$ $1+=0$
 $1+^{2}=1$ $1+=0$
 $1+^{2}=1$ $1+=0$
 $1+^{2}=1$ $1+=0$
 $1+^{2}=1$ $1+=0$

 $y = (1)^{3} - 3(1)$

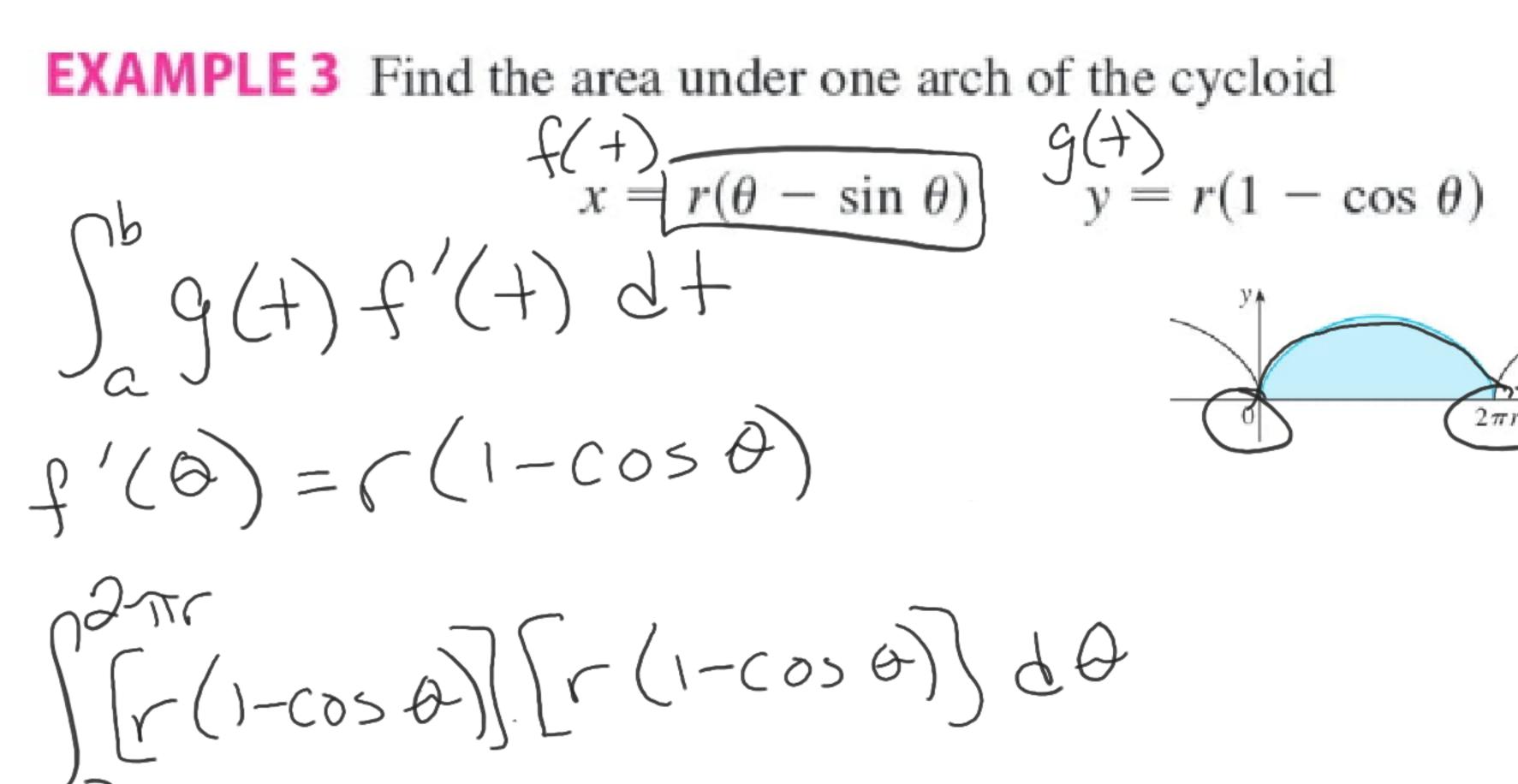
(1,-2)

+ = 0 Vert $+^{2}=1$ (0,0) $y=(-1)^3-3(-1)$ = 7 (1,2)

Areas

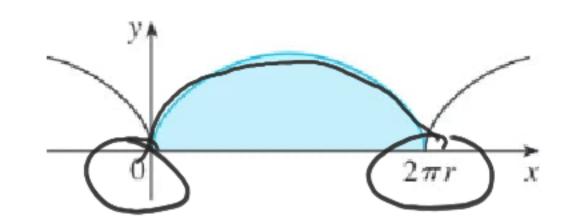
We know that the area under a curve y = F(x) from a to b is $A = \int_a^b F(x) dx$, where $F(x) \ge 0$. If the curve is traced out once by the parametric equations x = f(t) and y = g(t), $\alpha \le t \le \beta$, then we can calculate an area formula by using the Substitution Rule for Definite Integrals as follows:

$$A = \int_a^b y \, dx = \int_\alpha^\beta g(t) f'(t) \, dt \qquad \text{or} \quad \int_\beta^\alpha g(t) f'(t) \, dt$$



$$g(+)$$

$$y = r(1 - \cos \theta)$$



$$\int_{0}^{2\pi r} [-\cos \theta] [r(1-\cos \theta)] d\theta = \int_{0}^{2\pi r} \frac{3}{2} - 2\cos \theta + \frac{1}{2}\cos \theta$$

$$\int_{0}^{2\pi r} (1-\cos \theta)^{2} d\theta$$

$$\int_{2}^{2} \int_{0}^{2} \frac{3}{2} - 2\cos\theta + 2\cos\theta$$

$$\int_{2}^{2} \left(\frac{3}{2}\theta - 2\sin\theta + \frac{1}{4}\sin\theta\right)_{0}^{2} \int_{0}^{2} \left(\frac{3}{2}(2\pi) - 2\sin\theta + \frac{1}{4}\sin\theta\right) - \left(\frac{3}{2}(3\pi) - 2\sin\theta\right) + \frac{1}{4}\sin\theta$$

$$\int_{2}^{2} \left(\frac{3}{2}(2\pi) - 2\sin\theta\right) + \frac{1}{4}\sin\theta$$

$$\int_{2}^{2} \left(\frac{3}{2}(2\pi) - 2\sin\theta\right) = \frac{3}{2}\sin\theta$$

m α to β and $f(\alpha) = a$, $f(\beta) = b$. Putting For tution Rule, we obtain

$$\sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{\alpha}^{\beta} \sqrt{1 + \left(\frac{dy/dt}{dx/dt}\right)^2}$$

ave

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

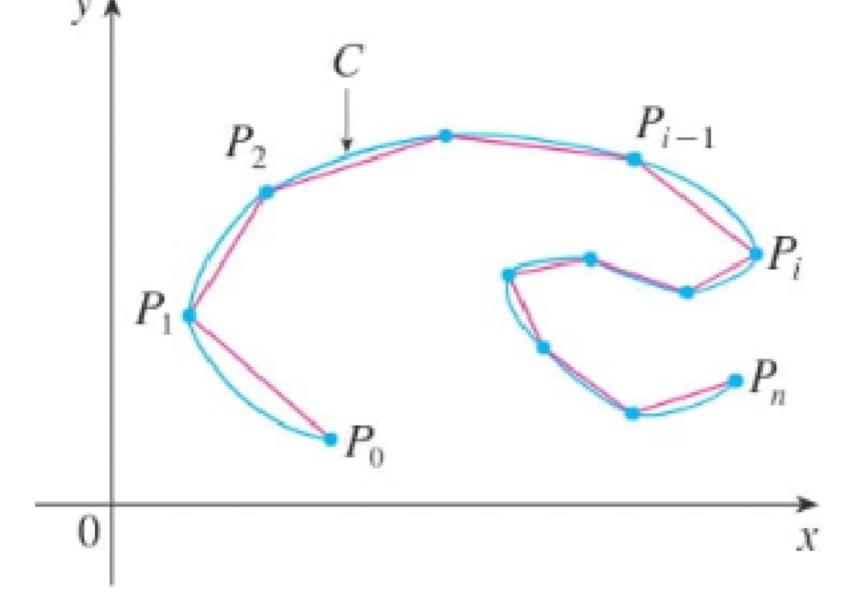


FIGURE 4

43.
$$x = 3t^2 - t^3$$
, $y = t^2 - 2t$

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$\chi' = 6 + -3 + 2$$

$$\int_{0}^{3} \sqrt{(6+-3+^{2})^{2}+(2+-2)^{2}}$$

$$\int_{-1}^{3} \sqrt{(6+-3+^{2})^{2} + (2+-2)^{2}} + (2+-2)^{2}$$

$$(36+^{2} - 36+^{3} + 9+^{4}) + (4+^{2} - 8+^{4})$$

$$9+^{4} - 36+^{3} + 40+^{2} - 8+^{4}$$

$$\int_{-1}^{3} \sqrt{2}$$

Surface Area

In the same way as for arc length, we can adapt Formula 8.2.5 to obtain a formula for surface area. Suppose the curve c given by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f', g' are continuous, $g(t) \ge 0$, is rotated about the x-axis. If C is traversed exactly once as t increases from α to β , then the area of the resulting surface is given by

6

$$S = \int_{\alpha}^{\beta} 2 \sqrt{y} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

The general symbolic formulas $S = \int 2\pi y \, ds$ and $S = \int 2\pi x \, ds$ (Formulas 8.2.7 and 8.2.8) are still valid, but for parametric curves we use

$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

EXAMPLE 6 Show that the surface area of a sphere of radius r is $4\pi r^2$. (27 (Cosa) (cosa) + (-rsina) 2TT (52 COS & TOCOS & + 12 SIN 24) = 1 2 Tr (1/2 r cos & d d

$$2 \pi r \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r \cos \theta d\theta$$

$$4 \pi r^{2} \int_{0}^{\frac{\pi}{2}} \cos \theta d\theta$$

$$4 \pi r^{2} \left(\frac{\sin \theta}{1 - 0} \right) = \frac{1}{4 \pi r^{2}}$$

$$4 \pi r^{2} \left(1 - 0 \right) = \frac{1}{4 \pi r^{2}}$$