1. Test for Divergence If you can see that $\lim_{n\to\infty}a_n$ may be different from 0, then apply the Test for Divergence.

00

If $\lim a_n$ does not exist or if $\lim a_n \neq 0$, then the series $\sum a_n$ is divergent.

$$a_{n} = \frac{1}{2} a_{n} = \frac{2}{5}$$

$$a_{n} = \frac{2}{5}$$

- 2. p -Series If the series is of the form $\sum 1/n^p$, then it is a p-series, which we know to be convergent if p > 1 and divergent if $p \le 1$.
- **3. Geometric Series** If the series has the form $\sum ar^{n-1}$ or $\sum ar^n$, then it is a geometric series, which converges if |r| < 1 and diverges if $|r| \geqslant 1$. Some preliminary algebraic manipulation may be required to bring the series into this form.

$$\frac{1}{N^2} = \frac{1}{N^{-3}} - 3 \le 1$$

$$C$$

4. Comparison Tests If the series has a form that is similar to a *p*-series or a geometric series, then one of the comparison tests should be considered. In particular, if a_n is a rational function or an algebraic function of n (involving roots of polynomials), then the series should be compared with a p-series. Notice that most of the series in Exercises 11.4 have this form. (The value of p should be chosen as in Section 11.4 by keeping only the highest powers of n in the numerator and denominator.) The comparison tests apply only to series with positive terms, but if $\sum a_n$ has some negative terms, then we can apply a comparison test to $\sum |a_n|$ and test for absolute convergence.

The Direct Comparison Test

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

- (i) If $\sum b_n$ is convergent and $a_n \leqslant b_n$ for all n, then $\sum a_n$ is also convergent.
- (ii) If $\sum b_n$ is divergent and $a_n \geqslant b_n$ for all n, then $\sum a_n$ is also divergent.

The Limit Comparison Test

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n o \infty} rac{a_n}{b_n} = c$$

where c is a finite number and c>0 , then either both series converge or both diverge.

5. Alternating Series Test If the series is of the form $\sum (-1)^{n-1}b_n$ or $\sum (-1)^nb_n$, then the Alternating Series Test is an obvious possibility. Note that if $\sum b_n$ converges, then the given series is absolutely convergent and therefore convergent.

Alternating Series Test

If the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots \qquad (b_n > 0)$$

satisfies the conditions

(i)
$$b_{n+1} \leqslant b_n$$
 for all n

(ii)
$$\lim_{n\to\infty} b_n = 0$$

then the series is convergent.

6. Ratio Test Series that involve factorials or other products (including a constant raised to the n th power) are often conveniently tested using the Ratio Test. Bear in mind that $|a_{n+1}/a_n| \to 1$ as $n \to \infty$ for all p-series and therefore all rational or algebraic functions of n. Thus the Ratio Test should not be used for such series.

The Ratio Test

(i)
$$\| \frac{a_{n+1}}{a_n} \| = L < 1 \text{ , then the series } \sum_{n=1}^\infty a_n \text{ is absolutely convergent (and }$$

therefore convergent).

(ii)
$$\| \frac{a_{n+1}}{a_n} \| = L > 1 \text{ or } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty \text{ , then the series } \sum_{n=1}^\infty a_n \text{ is divergent.}$$

(iii) If
$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=1$$
, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum a_n$.

7. Root Test If a_n is of the form $(b_n)^n$, then the Root Test may be useful.

The Root Test

If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum_{n=1}^\infty a_n$ is absolutely convergent (and

therefore convergent).

If $\lim_{n\to\infty} \sqrt[n]{|a_n|}=L>1$ or $\lim_{n\to\infty} \sqrt[n]{|a_n|}=\infty$, then the series $\sum_{n=1}^\infty a_n$ is divergent.

(iii) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$, the Root Test is inconclusive.

00

8. Integral Test If $a_n=f(n)$, where $\int_1^{\infty} f(x) \ dx$ is easily evaluated, then the Integral Test is

effective (assuming the hypotheses of this test are satisfied).

The Integral Test

Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$. Then

the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the improper integral $\int_1^{\infty} f(x) \ dx$ is convergent. In other words:

- (i) $\int_{1}^{\infty} f(x) \ dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
- (ii) $_{0}^{\infty}$ $_{0}^{\infty}$ If $\int_{1}^{\infty}f(x)\;dx$ is divergent, then $\sum a_{n}$ is divergent.

18.
$$^{\circ}$$

18.
$$\sum (n^{2})e^{-n^{3}}$$

$$\sum (n^{3})e^{-n^{3}}$$

$$1 = -x^{3}$$

$$\lim_{n=1} |x|^{2} + |x|^{2} = -x^{2}$$

$$\lim_{n=1} |x|^{2} + |x|^{2} = -x^{3}$$

$$\lim_{n=1} |x|^{2} + |x|^{2}$$

$$\sum_{k=1}^{\infty} \frac{2^{k-1}3^{k+1}}{k^k} \Rightarrow \frac{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}$$

$$\sum_{k=1}^{\infty} \frac{2^{k-1}3^{k+1}}{k^k} \Rightarrow \frac{3}{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}$$

$$\sum_{k=1}^{\infty} \frac{2^{k-1}3^{k+1}}{k^k} \Rightarrow \frac{3}{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}$$

$$\sum_{k=1}^{\infty} \frac{2^{k-1}3^{k+1}}{k^k} \Rightarrow \frac{3}{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}$$

$$\sum_{k=1}^{\infty} \frac{2^{k-1}3^{k+1}}{k^k} \Rightarrow \frac{3}{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}$$

$$\sum_{k=1}^{\infty} \frac{2^{k-1}3^{k+1}}{k^k} \Rightarrow \frac{3}{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}$$

$$\sum_{k=1}^{\infty} \frac{2^{k-1}3^{k+1}}{k^k} \Rightarrow \frac{3}{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}{2^{k} \cdot 2^{-1} \cdot 3^{k} \cdot 3}$$

$$\sum_{k=1}^{\infty} \frac{2^{k-1}3^{k+1}}{k^k} \Rightarrow \frac{3}{2^{k} \cdot 2^{-1} \cdot 3^{k+1}}{2^{k} \cdot 2^{-1} \cdot 3^{k+1}}$$

$$\sum_{k=1}^{\infty} \frac{2^{k-1}3^{k+1}}{k^k} \Rightarrow \frac{3}{2^{k} \cdot 2^{-1} \cdot 3^{k+1}}{2^{k} \cdot 2^{-1} \cdot 3^{k+1}}$$

$$\sum_{k=1}^{\infty} \frac{2^{k-1}3^{k+1}}{k^k} \Rightarrow \frac{3}{2^{k} \cdot 2^{-1} \cdot 3^{k+1}}{2^{k} \cdot 2^{-1} \cdot 3^{k+1}}$$

$$\sum_{k=1}^{\infty} \frac{2^{k-1}3^{k+1}}{k^k} \Rightarrow \frac{3}{2^{k} \cdot 2^{-1} \cdot 3^{k+1}} \Rightarrow \frac{3}{2^{k} \cdot 2^{-1}} \Rightarrow \frac{3}{2^{k}} \Rightarrow \frac{3}{2^{k$$

$$\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n}}$$

$$1/2 - 1/2$$

$$\frac{1}{n} \cdot \frac{2n}{n} = \frac{2n}{n}$$

$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$$

$$f(x) = \frac{\int x}{\sqrt{x}} =$$

$$\int n \times \rightarrow \sqrt{\times}$$

$$\sqrt{\chi} > 1/2 \chi /2$$

AST->Convergant

$$f'(x) = (1/x)(x^{1/2}) - (1/x)(2x^{1/2})(2x^{1/2})(2x^{1/2})$$

$$f'(x) = \frac{\partial -|n \times z|}{\partial x^{3/2}} = 0$$

$$2 -|n \times z| = 0$$

$$e^{|n \times z|} = 2$$

$$(x = e^{2})$$

an = + ar (In) Diverges **31.** [∞] $\sum \tan(1/n)$ n=1 $b_{n} = \frac{1}{n} \quad \text{Diverges}$ $L_{m} = \frac{1}{n} \quad \text{Diverges}$ $\frac{1}{n-n} = \frac{1}{n} \quad \frac{1}{n}$ $\frac{1}{N \rightarrow \infty} \frac{1}{N} = \frac{1}{(-1/n^2)} = \frac{1}{(-1/n^2)} = \frac{1}{N \rightarrow \infty} =$

$$\sum \frac{n^2+1}{5^n}$$

$$n=1$$

$$\frac{(n+1)^{2}+1}{5^{n+1}}$$

$$\frac{1}{-5} = \frac{1}{5} \left(\frac{n^2 + 2n + 2}{n^2 + 1} \right) = \frac{1}{5}$$

41.
$$\sum_{k=1}^{\infty} \frac{5^{k} / 4^{k}}{3^{k} + 4^{k}} = \frac{\left(5 / 4\right)^{k}}{\left(3 / 4\right)^{k} + 1}$$

$$\left(5 / 4\right)^{k} = \frac{\left(5 / 4\right)^{k}}{\left(3 / 4\right)^{k} + 1}$$

Jest) for Jest vergance

$$\sum_{k=1}^{\infty} \frac{5^k}{5^k}$$

$$\frac{5}{3} + 4 \times \left(\frac{5}{4}\right)^{k} LCT$$