00

Given a series  $\sum_{n=1} a_n = a_1 + a_2 + a_3 + \cdots$ , let  $s_n$  denote its n th partial sum:

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

If the sequence  $\{s_n\}$  is convergent and  $\lim_{n\to\infty} s_n = s$  exists as a real number, then the series  $\sum a_n$  is called **convergent** and we write

$$a_1 + a_2 + \cdots + a_n + \cdots = s$$

or

$$\sum_{n=1}^{\infty} a_n = s$$

The number s is called the **sum** of the series.

If the sequence  $\{s_n\}$  is divergent, then the series is called **divergent**.

# Example 2

Show that the series is convergent, and find its sum. n(n + 1)

### The geometric series

$$\sum_{n=0}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

n=1

is convergent if |r| < 1 and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} \neq \frac{a}{1-r} \qquad |r| < 1$$

If  $|r|\geqslant 1$  , the geometric series is divergent.

$$5 - \frac{10}{3} + \frac{20}{9} + \frac{40}{27} + \cdots$$

$$\frac{8}{5} = \frac{5}{1 - \frac{3}{3}}$$

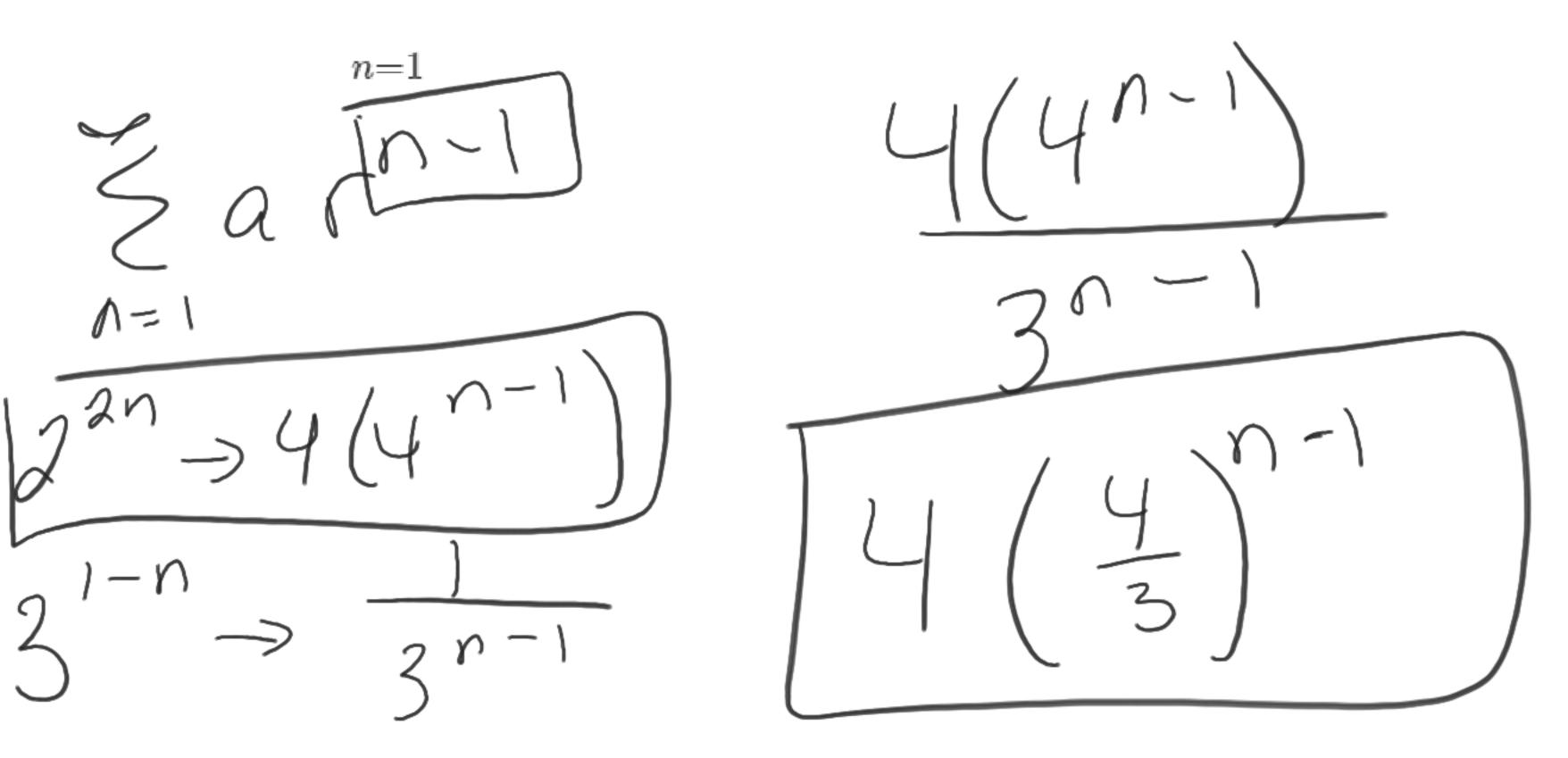
$$\alpha = 5$$

$$\gamma = -\frac{3}{3}$$

$$\frac{2}{2} = \frac{1}{1-1}$$

 $\infty$ 

Is the series  $\sum 2^{2n}3^{1-n}$  convergent or divergent?



A drug is administered to a patient at the same time every day. Suppose the concentration of the drug is  $C_n$  (measured in  $\mathrm{mg/mL}$ ) after the injection on the n th day. Before the injection the next day, only 30% of the drug remains in the bloodstream and the daily dose raises the concentration by 0.2  $\mathrm{mg/mL}$ .

$$C_1 \Rightarrow 0.2$$
  
 $C_2 \Rightarrow 0.2 + (0.3)(0.2) = 0.26$   
 $C_3 \Rightarrow 0.2 + (0.3)(0.26) = 0.278$   
 $0.2 + (0.2 + (0.3)(0.2))(0.3)$   
 $0.2 + 0.06 + (0.3)(0.2)$ 

$$C_{n} = 0.2 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$C_{n} = 0.2 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.2 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.2 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.2 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.2 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.3 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.3 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.3 + 0.3 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.3 + 0.3 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.3 + 0.3 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.3 + 0.3 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.3 + 0.3 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.3 + 0.3 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.3 + 0.3 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.3 + 0.3 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^{n-1}$$

$$= 0.3 + 0.3 + 0.3 + 0.2(0.3) + 0.2(0.3)^{2} + \dots + 0.2(0.3)^$$

If the series  $\sum a_n$  is convergent, then  $\lim a_n = 0$  .

 $n{=}1$ 



 $n \rightarrow \infty$ 

## Test for Divergence

 $\infty$ 

If  $\lim a_n$  does not exist or if  $\lim a_n \neq 0$  , then the series  $\sum a_n$  is divergent.

 $n \rightarrow \infty$ 

n=1

n=1

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

$$\lim_{n \to \infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

 $s_{2^n} > 1 + -$ 

Show that the series 
$$\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4} \text{ diverges.}$$

$$\frac{1}{5 + \frac{1}{2}} \Rightarrow \frac{1}{5}$$

$$\frac{1}{5 + \frac{1}{2}} \Rightarrow \frac{1}{5}$$

Test for Divergance  $Lim an \pm 0$   $\leq an$ DIVE 5955 Geometric Sties 1-12/ Converges 10121 Diverges

If  $\sum a_n$  and  $\sum b_n$  are convergent series, then so are the series  $\sum ca_n$  (where c is a constant),  $\sum (a_n + b_n)$ , and  $\sum (a_n - b_n)$ , and

(i) 
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

(ii) 
$$\infty$$
  $\infty$   $\infty$   $\infty$   $\infty$  
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

(iii) 
$$\infty$$
  $\infty$   $\infty$   $\infty$   $\infty$   $\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$ 

$$\infty$$

Find the sum of the series 
$$\sum \left(\frac{3}{n(n+1)} + \frac{1}{2^n}\right) = 371 = 24$$

$$\frac{3}{2} \frac{3}{n(n+1)}$$

$$\frac{3}{n(n+1)} = 3\frac{2}{3(n+1)} = 3(1) = 3$$

$$(n+1)^{-3} = 2 \qquad (n(n+1)^{-3} = 1$$

#### The Integral Test

Suppose f is a continuous, positive, decreasing function on  $[1, \infty)$  and let  $a_n = f(n)$ . Then

the series  $\sum_{n=1}^{\infty} u_n$  is convergent if and only if the improper integral  $\int_1^{\infty} f(x) \ dx$  is convergent. In other words:

(i) 
$$\int_{1}^{\infty} f(x) \ dx$$
 is convergent, then  $\sum_{n=1}^{\infty} a_{n}$  is convergent.

(ii) 
$$\sum_{n=1}^{\infty} \int_{1}^{\infty} f(x) \; dx \; \text{is divergent, then } \sum_{n=1}^{\infty} a_{n} \; \text{is divergent.}$$

#### Example 1

Test the series  $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$  for convergence or divergence.

For what values of p is the series  $\sum \frac{1}{n^p}$  convergent?

n=1

The p-series  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  is convergent if p>1 and divergent if  $p\leqslant 1$  .

Determine whether the series  $\sum_{n=0}^{\infty} \frac{\ln n}{n}$  converges or diverges.

n - 1